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 Evolutionary Perspectives on 
Hermaphroditism in Fishes 

 J.C. Avise    a     J.E. Mank    b  

  a    Department of Ecology and Evolutionary Biology, University of California,  Irvin  e, Calif. , USA
 b    Department of Zoology, University of Oxford,  Oxford , UK 

 The ancient Greeks were intrigued in their mytholo-
gies by the concept of hermaphroditism, i.e. the expres-
sion of both male and female sex within the lifetime of an 
individual (Box 1). Hermaphroditism also intrigues mod-
ern biologists, for several reasons: many real-world plants 
and animals exhibit the phenomenon [Policansky, 1982]; 
it is so obviously different from the typical human condi-
tion of distinct lifelong sexes; and the adaptation raises 
many interesting evolutionary questions and scenarios. 
In fishes, either simultaneous or sequential hermaphro-
ditism has been documented in approximately 500 (2%) 
of 25,000 extant species [Pauly, 2004] representing more 
than 20 taxonomic families in 9 orders [Breder and Rosen, 
1966; Smith, 1975; Mank et al., 2006]. Sexual differentia-
tion in fishes thus is evolutionarily quite labile as well as 
developmentally plastic.

   Box 1. Hermaphroditism in Greek Mythology 

  The word hermaphrodite derives from the Greek 
myth of Hermaphroditos, a handsome son of Hermes 
and Aphrodite, the Greek gods of male and female sex-
uality. At age 15, Hermaphroditos was accosted one day 
by a lovely nymph – Salmacis – who embraced him, 
kissed him, and prayed to the gods that they be united 
forever. Her wish was granted and Hermaphroditos 
thereafter became simultaneously part male and part 
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 Abstract 

 Hermaphroditism is a derived and polyphyletic condition in 
fishes, documented in about 2% of all extant teleost spe-
cies scattered across more than 20 taxonomic families in 9 
 orders. It shows a variety of expressions that can be cat-
egorized into sequential and synchronous modes. Among 
the sequential hermaphrodites are protogynous species in 
which an individual begins reproductive life as a female and 
later may switch to male, protandrous species in which a fish 
starts as a male and later may switch to female, and serial bi-
directional sex changers. Among the synchronous hermaph-
rodites (in which an individual can simultaneously produce 
eggs and sperm) are several outcrossing and one predomi-
nantly selfing species. A few species also consist of mixtures 
of hermaphroditic and single-sex individuals. All of these re-
productive categories have been the subject of numerous 
theoretical and empirical treatments from an evolutionary 
perspective. Here we highlight some of the major con-
clusions from these studies, which collectively have been 
 informative on a variety of biological topics related to re-
productive modes, gender allocations, sexual conflict and 
gamesmanship, mating systems, and life-history tradeoffs. 

 Copyright © 2009 S. Karger AG, Basel 

 Received: July 18, 2008 
 Accepted: September 22, 2008 

 John C. Avise 
 Department of Ecology and Evolutionary Biology 
 University of California 
 Irvine, CA, 92697 (USA) 
 Tel. +1 949 824 3925, Fax +1 949 824 2181, E-Mail javise@uci.edu 

 © 2009 S. Karger AG, Basel
1661–5425/09/0033–0152$26.00/0 

 Accessible online at:
www.karger.com/sxd 

http://dx.doi.org/10.1159%2F000223079


 Hermaphroditism in Fish Sex Dev 2009;3:152–163 153

female. Tiresias – the blind prophet-priest of Zeus –
was another type of hermaphrodite who in this case 
switched sequentially between male and female. It all 
began when Tiresias chanced upon a pair of copulating 
snakes and beat them with a stick. Hera (the wife of 
Zeus) was infuriated, and punished Tiresias by trans-
forming him into a woman. Seven years later, Tiresias 
again encountered two mating snakes, but this time left 
the serpents alone. As a reward, Hera permitted Tire-
sias to regain a male condition.

  Earlier researchers sometimes invoked population-
level advantages to rationalize the evolution of hermaph-

roditism. For example, Moe [1969] suggested that se-
quential hermaphroditism might have evolved as a popu-
lation control mechanism, with the age of transformation 
between female and male shifting up or down to compen-
sate for whether a population was too sparse or too dense. 
Other hypotheses with a group-selection aura posited 
that hermaphroditism might increase total zygotic pro-
duction in a population [Smith, 1967] or focus sexual per-
formances into age classes that would maximize a popu-
lation’s reproductive output [Nikolski, 1963].

  By contrast, more modern views have emphasized 
how natural selection and sexual selection might operate, 
in various social and ecological contexts, on the  differen-
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  Fig. 1.  Distributions of various types of 
hermaphroditism (male-first or protan-
drous, female-first or protogynous, and si-
multaneous) and gonochorism (separate 
sexes), along extant nodes of a provisional 
supertree for bony fishes [after Mank et
al., 2006]. The supertree is a cladogram 
(branch lengths are not proportional to di-
vergence time) that represents an amalga-
mation of several published phylogenies 
from whole-genome or partial-genome
mtDNA sequences. Note that ‘Perciformes’ 
is polyphyletic. 
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tial fitnesses of individuals  who have the capacity to re-
produce as males  and  females at various stages of life 
[Warner, 1975; Shapiro, 1987; Leonard, 2006]. Addition-
ally, there are several different types of hermaphroditism, 
which can be broadly categorized by whether each indi-
vidual in a species produces male and female gametes si-
multaneously (like Hermaphroditos; see Box 1) or wheth-
er it switches sex during life but has only one functional 
sex at any time (like Tiresias; see Box 1). Alternative types 
of hermaphroditism have different evolutionary paths, 
and modern evolutionary theory has identified some of 
the causes and implications.

  This review will encapsulate major conclusions – from 
previous empirical studies and theoretical treatments 
about the evolution of hermaphroditism in fishes. Endo-
crinological, physiological, and other ontogenetic me-
chanics of sex change are also of scientific interest, but 
these are addressed elsewhere [see Nakamura et al., 2005] 
and will not be the focus here.

  Evolutionary History 
  Phylogenetic Backdrop . The 9 taxonomic orders of tel-

eosts in which hermaphroditism has been documented 
are scattered widely across the phylogeny of teleost fishes 
( fig. 1 ). No order consists solely of hermaphroditic spe-
cies, but instead contains gonochoristic (separate-sex, or 
dioecious) species as well. Indeed, closer phylogenetic in-
spection of several orders and families that are polymor-

phic for reproductive mode indicates that each hermaph-
roditic clade typically is embedded within a deeper clade 
otherwise composed of gonochoristic taxa (example in 
 fig. 2 ). Extant hermaphroditism in teleost fish is therefore 
a polyphyletic and derived condition relative to gonocho-
rism. Furthermore, no extant hermaphroditic lineage ap-
pears to be evolutionarily ancient (although this should 
be interpreted in light of the fact that no single sex deter-
mining mechanism in fish appears to be ancient [Mank 
et al., 2006], and thus need not imply that hermaphrodit-
ism is any less evolutionarily stable than alternative strat-
egies). The evolutionary flexibility of reproductive modes 
in fishes also extends to different forms of hermaphro-
ditism ( figs. 1 ,  3 ), including female-first protogyny and 
male-first protandry (see beyond).

   Transitional States . Far less certain, however, are an-
swers to the following questions. How exactly does her-
maphroditism evolve from gonochorism? And, does 
gonochorism ever re-emerge from phylogenetically lo-
calized instances of ancestral hermaphroditism? Some 
insight can be gleaned from the plant literature, where 
theoretical and empirical methods have been used to elu-
cidate the evolutionary history of hermaphroditism. In 
principle, gonochorism and synchronous hermaphrodit-
ism are evolutionary endpoints on a reproductive spec-
trum that includes intermediate mixed-sex modalities 
( fig. 4 ): gynodioecy (a population mixture of females and 
hermaphrodites), androdioecy (a mixture of males and 
hermaphrodites), and trioecy (males, females, and her-
maphrodites). Trioecy is extremely rare in the biological 
world and androdioecy is only slightly less so [Weeks et 
al., 2006], but gynodioecy is rather common (especially 
in plants, where  1 500 species in 50 families display the 
phenomenon) [Jacobs and Wade, 2003]. Theoretical 
models addressing these biological patterns (again, pri-
marily in plants) have a long history [Lloyd, 1975; Charles-
worth and Charlesworth, 1978; Charnov, 1982; Charles-
worth, 1984; Barrett, 1998; Jarne and Charlesworth, 1993; 
Pannell, 2000; Wolf and Takebayashi, 2004], and they 
generally suggest the following.

  During an evolutionary transition between separate-
sex and purely hermaphroditic reproduction, typically 
one sex at a time is either lost (in a transition from gono-
chorism to hermaphroditism) or gained (in a transition 
from hermaphroditism to gonochorism). This factor 
alone (a step-by-step transition) probably helps to ac-
count for the rarity of trioecy. Furthermore, in an evo-
lutionary transition from gonochorism to hermaphro-
ditism (or vice versa), gynodioecy has been deemed 
 theoretically more likely than androdioecy because, ulti-
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mately, male gametes are far more abundant than female 
gametes. Thus, especially if hermaphrodites can self-fer-
tilize, with regard to reproductive success a pure female 
in a gynodioecious population should be more competi-
tive than a male in an androdioecious population, assum-
ing that male gametes from hermaphrodites can be used 
to fertilize a female’s eggs. Once females have arisen in an 
otherwise hermaphroditic species, they may also gain a 
reproductive benefit by virtue of engaging in outcrosses 
only, whereas some lineages of self-fertilizing hermaph-
rodites might suffer from inbreeding depression.

  Most of the theoretical models underlying these con-
clusions have incorporated biological assumptions that 
apply to plants (and perhaps some invertebrate animals) 
but may have less relevance to fish. For example, the as-
sumption that male gametes from hermaphrodites are 
physically available to fertilize the eggs of pure females 
may hold for many pollinated plants and free-spawning 
marine invertebrates, but may be inappropriate for fish 
species with elaborate courtship and spawning rituals; 
and self-fertilization is unknown in fishes, except in one 
androdioecious species ( Kryptolebias marmoratus , to be 
discussed later). Furthermore, some of the biological phe-
nomena in plants (such as the prevalence of gynodioecy 
over androdioecy) that motivated the available models on 
evolutionary transitions between dioecy and hermaphro-
ditism do not seem to apply to fishes. Indeed, the condi-
tions of gynodioecy and androdioecy are only rarely re-
ported in fish [Petersen and Fischer, 1986; Robertson et 
al., 1982].

   Sexual Lability . Another reservation about applying 
the theory developed for plants to fishes involves the im-
plicit assumption that reproductive states transitional to 
gonochorism and hermaphroditism are genetically hard-
wired and thus directly responsive to natural or sexual 
selection. Instead, sexual differentiation in fish is re-
markably plastic developmentally, and subject to envi-
ronmental influences [Francis, 1992; see also several ar-
ticles in the current issue]. For example, in the otherwise 
hermaphroditic mangrove killifish, males can be experi-
mentally induced by exposure to particular environmen-
tal conditions [Harrington and Kallman, 1967]; and in 
nature, developmental switches between male and female 
have long been known to be socially mediated in several 
fish species that are sequentially hermaphroditic [Fishel-
son, 1970; Robertson, 1972; Fricke and Fricke, 1977; Sha-
piro, 1979]. These broad norms of reaction with respect 
to gender reflect the fact that testes and ovaries in teleosts 
derive during ontogeny from a single precursor tissue 
that can differentiate rather flexibly during an individu-

Trioecy

Androdioecy

Gynodioecy

GonochorismHermaphroditism

Age (or body size)

A
g

e-
sp

ec
ifi

c 
fe

cu
n

d
it

y 
(z

yg
ot

es
)

0

30

a

b

c

60

1 5 10

  Fig. 4.  Reproductive systems that in principle could be evolution-
arily transitional between gonochorism and hermaphroditism in 
plants [modified from Weeks et al., 2006]. 

  Fig. 5.  Age-specific reproductive outputs for a hypothetical popu-
lation of fishes [after Warner, 1975]. Curve  a  is for females; curve 
 b  is for males in a population where mating is random; and curve 
 c  is for males in a population where females mate only with same-
age or older males (as might tend to be true in male-territorial or 
haremic species, for example; but see also Taborsky [2008]). 
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al’s lifetime (unlike the case in birds and mammals, for 
example). This is not to imply that selection plays no role 
in the evolution of reproductive modes in fish, or that fish 
reproductive operations have no genetic basis. To the 
contrary, proximate environmental factors that influence 
sexual expression in a fish population are likely to alter 
selection pressures that ultimately influence the evolu-
tion of underlying sex-influencing mechanisms (includ-
ing, in some species, the genetic and developmental scope 
for hermaphroditism).

  In any event, the apparent paucity of gynodioecy and 
androdioecy in extant fishes suggests that these transi-
tional states tend to be evolutionarily highly ephemeral 
and rare at best, perhaps because the set of fitness condi-
tions favoring the stability of mixtures of hermaphrodit-
ic and gonochoristic systems is restrictive [Charnov et al., 
1976]. In part for this reason, most of the available evolu-
tionary theory regarding hermaphroditism in fish has 
addressed selective factors that might promote the ex-
pression of different forms of hermaphroditism in vari-
ous taxa.

  Sequential Hermaphroditism 

  If we assume that the mechanism controlling induction of sex 
change has evolved to permit individuals to change sex only when 
it is to their reproductive advantage to do so, then a satisfying, evo-
lutionary explanation should be capable of predicting correctly 
when individuals should change sex and when they should not.

Shapiro, 1987 

  Most non-gonochoristic fish species are sequential as 
opposed to simultaneous (synchronous) hermaphro-
dites. Sequential hermaphroditism comes in 3 primary 
forms: protogyny, in which an individual begins repro-
ductive life as a female and then later may switch to male; 
protandry, in which an individual begins reproductive 
life as a male and later may switch to female; and serial 
bi-directional sex change, in which an individual may 
switch back and forth between functional male and fe-
male. Protogyny is the most common pattern in nature 
[Warner, 1984], but the fact that all 3 forms of sequen-
tial hermaphroditism have been documented in marine 
fishes (most commonly in reef-dwelling species) argues 
that no universal fitness advantage invariably attends 
being either a female first, or a male first, in a fish’s 
life.

  Some ichthyologists of past decades assumed that each 
sequential hermaphrodite automatically changes sex 
upon reaching a threshold body size or critical age. How-

ever, laboratory and field observations have demonstrat-
ed that social and behavioral factors typically trigger each 
switch from one sex to the other [Shapiro, 1987]. For ex-
ample, removal of a dominant male from a social group 
of protogynous fish, or removal of a female from a pro-
tandric group, may induce one or more remaining indi-
viduals to change sex. Empirically, fish typically change 
sex when they reach about 80% of their maximum body 
size and are about 2.5 times their initial age at sexual ma-
turity [Allsop and West, 2003]. Considerable effort has 
gone into analyzing possible ecological and demographic 
conditions that proximately trigger such sex changes and 
that ultimately have led to protogyny, protandry, or se-
rial switching in various fish species.

  One of the earliest evolutionary models for sex
change – the ‘size-advantage’ hypothesis – today remains 
a singularly powerful explanation for sequential her-
maphroditism [Ghiselin, 2006]. As originally phrased by 
Ghiselin [1969], ‘Suppose that the reproductive functions 
of one sex were better discharged by a small animal, or 
those of the other sex by a large one. An animal which, as 
it grew, assumed the sex advantageous to its current size 
would thereby increase its reproductive potential.’ This 
life-history notion was formalized by Warner [1975] and 
Warner et al. [1975] who showed that if age-specific re-
productive output increases more rapidly with age (or 
body size) for one sex than the other, and if the curves 
relating fecundity to age cross for the two sexes, then in 
principle an age or body size exists at which an individu-
al could reproductively profit by switching gender ( fig. 5 ). 
In other words, ‘individuals should change sex when the 
reproductive prospects of functioning as the opposite sex 
exceed the expectations of the current sex’ [Warner and 
Swearer, 1991].

  Following these seminal treatments, most subsequent 
empirical appraisals and theoretical analyses of sequen-
tial hermaphroditism can be considered refinements that 
have taken into account additional factors (beyond body 
size per se) that might impact age-specific fecundity and 
mortality curves in ways that affect individuals’ expecta-
tions for reproductive success as a function of gender. The 
kinds of complicating (and often interacting) factors that 
have been addressed include population density [Warner 
and Hoffman, 1980; Lutnesky, 1994], population body-
size ratios [Ross et al., 1983], sex ratios and mating pat-
terns [Shapiro and Lubbock, 1980; Warner, 1982], sperm 
competition and reproductive skew [Muñoz and Warner, 
2003, 2004], immediate physiologic or other costs (in-
cluding missed mating opportunities) of sex change per 
se [Hoffman et al., 1985; Iwasa, 1991; Munday and Molo-
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ny, 2002], or other life-history tradeoffs [Charnov, 1986]. 
Each such factor has been considered in the context of 
how it might alter age-specific reproduction (and hence 
selection pressures for the timing and direction of sex 
change) in one species or another of sequentially her-
maphroditic fish.

  Protogyny 
 This form of hermaphroditism characterizes many 

wrasses (Labridae) [Warner and Robertson, 1978], par-
rotfishes (Scaridae) [Robertson and Warner, 1978], and 
other reef fishes. The bluehead wrasse  (Thalassoma bifas-
ciatum)  provides a well-studied example [Warner and 
Swearer, 1991]. Females and juvenile males display an ini-
tial phase (IP) coloration with a yellow dorsal stripe and 
a series of lateral green blotches separated by white bars; 
large breeding males show a striking terminal phase (TP) 
with a bright blue head and green body. The IP males are 
‘primary’ males, whereas those in the non-reversible TP 
are ‘secondary’ males who arose either from IP males or 
from particular females who changed sex (typically with-
in a few days following the loss of TP males from a locale). 
Many other protogynous species, such as the angelfish 
 Centropyge potteri , have similar lifestyles but are monan-
dric: i.e., all males derive from sex-changed females [Lut-
nesky, 1994].

  Protogyny is predicted to be evolutionarily favored 
when the reproductive output of males increases, as a 
function of size or age, faster than that of females. Thus, 
protogyny should also often be associated with sexual se-
lection on males. Male size advantage is especially likely 
when large males tend to monopolize matings [Warner, 
1988], as for example in species where territorial or oth-
erwise ruling males control reproductive access to fe-
males [Lutnesky, 1994; Ross, 1990]. Thus, it is probably 
no mere coincidence that protogynous life histories are 
observed most frequently in fishes with haremic social 
systems in which most of the mating events are instru-
mented by large, dominant males (although it may be dif-
ficult to determine whether protogyny is the cause or the 
effect in this association).

  Although the size-advantage model generally has 
proved powerful in explaining sex-change patterns in 
hermaphroditic fish species, not all field observations 
seem easily accommodated under this model. For exam-
ple, in some protogynous species the largest females do 
not always change sex when given the opportunity [Lut-
nesky, 1994; Cole and Shapiro, 1995]. To address this co-
nundrum, Muñoz and Warner [2004] conducted field 
observations and experiments on a Caribbean popula-

tion of bucktooth parrotfish  (Sparisoma radians) . The au-
thors found that pronounced size-related skews in female 
fecundity, coupled with dilutions of paternity via inter-
male sperm competition, set up population conditions in 
which, for the largest females, expected reproductive suc-
cess as a male was actually lower than continued repro-
duction as a female. Factoring in these complications 
helped to make sense of the observation that smaller fe-
males were often the sex changers in this species. This 
study illustrates how suitable modifications to the size-
advantage model have sometimes proved useful in un-
derstanding the peculiarities of particular protogynous 
systems.

  Protandry 
 In the popular cartoon movie Finding Nemo, a male 

anemonefish loses his mate and must struggle alone to 
raise his offspring Nemo. In real life, Nemo’s father like-
ly would have switched gender following his mate’s death 
and then paired with a male. Anemonefish such as  Am-
phiprion clarkii  (Pomacentridae) are among the few ma-
rine fish that begin reproductive life as a functional male 
and later switch to female [Miura et al., 2003]. The black 
porgy ( Acanthopagrus schlegeli ; Sparidae) is another ex-
ample [Wu et al., 2005]. In the case of  Amphiprion , a local 
breeding community typically consists of one dominant 
female and several smaller males and juveniles, and if the 
breeding female dies a male then transforms to take her 
place.

  Perhaps the most surprising aspect of protandry is its 
rarity relative to protogyny. In most fish species, female 
fecundity increases dramatically with age and body size, 
whereas even small mature males can produce enough 
sperm to fertilize countless eggs. Thus, selection pressures 
might generally seem to favor a male-first-in-life strategy 
(all else being equal). However, protandry typically pro-
duces a male-biased sex ratio, further exacerbating the 
sperm excess that is expected even in populations with a 
balanced sex ratio. Thus, where male competition exists 
for mating opportunities, protandry would be generally 
maladaptive. Additionally, for many fish species the slopes 
in the regressions of age-specific fecundity on body size 
( fig. 5 ) are probably rather similar in males and females 
when mating is either random or monogamous (com-
pared to the great disparity in these slopes, especially in 
later age cohorts, when large males are highly polygynous 
and can monopolize matings with many females). By these 
lines of reasoning, the rarity of protandry relative to pro-
togyny might not be so unexpected after all.
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  Serial Bidirectional Sex Change 
 Although most sequential hermaphrodites change sex 

only once in a lifetime, individuals in several goby species 
(Gobiidae) are known to display serial sex changes in 
both directions [Sunobe and Nakazono, 1993; Kuwamu-
ra et al., 1994; St Mary, 1994, 1997]. Examples are pro-
vided by obligate coral-dwelling gobies in the genera 
 Gobiodon  and  Paragobiodon . These reef fish live among 
the protective branches of live corals, often as single 
breeding pairs but sometimes in larger social groups in 
which only the biggest 2 or 3 individuals are reproduc-
tively active [Cole and Hoese, 2001].

  Two evolutionary hypotheses have been advanced to 
account for bi-directional sex change. Under the ‘risk-of-
movement’ model [Nakashima et al., 1996; Munday et al., 
1998], intense predation pressures on patch-structured 
reefs make mate-searching movements very risky for 
small and sparsely distributed fish like gobies, thus giv-
ing a selective advantage to any stay-at-home individual 
who could facultatively switch gender as the need arises 
(such as when a mate dies or when the sex ratio is highly 
skewed in the local environs). A different (but somewhat 
overlapping) hypothesis – the ‘growth-rate-advantage’ 
model [Kuwamura et al., 1993; Nakashima et al., 1995] –
incorporates the observation that female gobies grow 
faster than males, yet reproductive success may increase 
equally with body size in both sexes (because larger fe-
males produce more eggs and larger males can better de-
fend egg clutches). Under this biological set-up, when two 
potential mates meet, selection should favor different 
kinds of sex change: protogyny when the initial pair con-
sists of two females, protandry when the pair consists of 
two males, and sex reversal when the female initially is 
larger than the male in a heterosexual pair [Munday, 
2002]. The two competing models – risk-of-movement 
and growth-rate-advantage – were put to test using ma-
nipulative field experiments for the Australian goby 
 Gobiodon histrio , and for this species the risk-of-move-
ment hypotheses proved to match the observations most 
closely [Munday, 2002].

  Synchronous Hermaphroditism 

 In a relatively small number of fish species, an indi-
vidual is capable of producing both male and female gam-
etes simultaneously [Fischer and Petersen, 1987; Cole, 
1990; Kobayashi and Suzuki, 1992]. ‘Cosexuality’ of this 
form is known in representatives of about a dozen fish 
families, most notably in the Serranidae, Cirrhitidae, and 

Gobiidae. The rarity of synchronous hermaphroditism in 
fishes is probably due in part to inherent antagonisms 
between male and female hormonal or other physiologi-
cal systems [Bull and Charnov, 1985], and perhaps to high 
fixed costs for each sexual function [Heath, 1977]. Addi-
tionally, for outcrossing simultaneous hermaphrodites, 
the higher cost of producing female gametes creates an 
inherent risk: without some mechanism to ensure that 
mates contribute equal amounts of both gametes, cheat-
ing strategies might easily evolve and lead to the loss of 
simultaneous hermaphroditism in a lineage.

  With a single documented exception (the mangrove 
killifish, Cyprinodontidae; see beyond), all synchronous-
ly hermaphroditic fish species are thought to outcross 
rather than self-fertilize. In some species such as the 
chalk bass  (Serranus tortugarum) , an individual typically 
alternates sexual roles in close succession, spawning seri-
ally during an encounter as a male and as a female. In 
other species such as the blue-banded goby  (Lythrypnus 
dalli) , an individual reportedly can have competent male 
and female gonadal tissue simultaneously but nonethe-
less act only as male or female at each stage in life, thus 
partly decoupling physiological and behavioral aspects of 
synchronous hermaphroditism [St Mary, 1993]. Thus, 
such species might best be considered sequential her-
maphrodites. And in a few species including the barred 
serrano  (Serranus fasciatus) , specimens mature as simul-
taneous hermaphrodites but larger individuals later may 
lose female function and become functional males [Pe-
tersen, 1990]. Such species could be deemed androdioe-
cious.

  One basic ecological and evolutionary consideration 
for synchronous (but not all sequential) hermaphrodites 
is encapsulated in the ‘low-density’ model, which notes 
that individuals who produce male and female gametes 
at the same time have less difficulty than gonochorists in 
finding mates, especially when populations are sparse 
[Tomlinson, 1966]. This advantage should hold both for 
outcrossing hermaphrodites (who need to encounter only 
one other individual to mate) and self-fertilizing her-
maphrodites (who need not encounter any partner). In 
this mate-acquisition regard, some of the possible selec-
tive advantages for synchronous hermaphrodites can 
overlap those for sequential hermaphrodites under the 
risk-of-movement model described above.

  Outcrossing 
 Small reef-dwelling seabasses in the family Serranidae 

illustrate the standard types of mating behavior in syn-
chronous hermaphrodites. In the black hamlet  (Hypo-
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plectrus nigricans) , 2 otherwise solitary individuals pair 
up (typically in the late afternoon) to spawn in a process 
called egg trading that consists of a 3-step behavioral se-
quence [Fischer and Petersen, 1987]: (a) each fish pack-
ages an entire day’s clutch of eggs into parcels; (b) court-
ship is initiated by the individual that will first release 
eggs; and (c) partners take turns releasing an egg parcel 
every few minutes and externally fertilizing their mate’s 
released parcel. Hamlet partners are usually faithful dur-
ing the episode but occasionally switch partners on dif-
ferent days, so the mating system approximates serial 
monogamy. In the harlequin bass  (Serranus tigrinus) , the 
process is similar except that clutches are not parceled 
and the mating system is thought to be permanent mo-
nogamy. And, in the barred serrano – a rare example
of an androdioecious species [Hastings and Petersen, 
1986] – the mating system (harem-style polygyny) is sim-
ilar to that of some protogynous wrasses described ear-
lier.

  In effect, an outcrossing synchronous hermaphrodite 
faces sex-role decisions within a spawning episode or sea-
son that are analogous to the sex-role choices faced by 
sequential hermaphrodites across a lifetime: namely, how 
best to allot male versus female function so as to maxi-
mize expectations for reproductive success [Fischer, 1981, 
1984; St Mary, 1994; Petersen and Fischer, 1996]. Thus, 
sex-allocation theory – which addresses how a hermaph-
rodite should in principle divide its reproductive portfo-
lio between male and female effort [Petersen, 1991] – is 
again relevant, and many similar considerations that 
arose for sequential hermaphrodites reappear in this new 
context. For example, in the androdioecious barred ser-
rano – a species with female harems – a late-life switch 
from hermaphrodite to male can be rationalized by the 
size-advantage hypothesis, using the same basic argu-
ment (disproportionate mating success for larger males) 
that applied to haremic species of protogynous hermaph-
rodites [Petersen, 1987].

  With respect to egg-trading behavior in the serially 
monogamous seabasses, a ‘tit-for-tat’ model has been ap-
plied [Fischer and Petersen, 1987; Petersen, 1995]. The ba-
sic idea is that by releasing a clutch gradually and waiting 
for a partner to reciprocate, a pair-mating fish can better 
evaluate the mating situation and cut its losses if its part-
ner deserts. In the harlequin bass, by contrast, egg parcel-
ing is presumably less critical because the monogamous 
pair bond has greater permanency. Such tit-for-tat sce-
narios are merely one aspect of the ‘hermaphrodite’s di-
lemma’ [Leonard, 1990] that envisions inevitable sexual 
conflict (differences of interest between male and female 

partners) [Leonard, 1993] in any reproductive interaction 
involving reciprocity with possible cheating. In turn, the 
interactive reproductive games played by hermaphrodit-
ic fish are just one subset of the longstanding topic of how 
cooperative interactions evolve [Axelrod and Hamilton, 
1981].

  Self-Fertilization 
  The necessity to reproduce at all costs should favor the develop-

ment of selfing wherever the environment is such that the transfer 
of gametes between individuals is hindered.       Ghiselin, 1969 

  Only one hermaphroditic species – the mangrove kil-
lifish,  Kryptolebias  (formerly  Rivulus )  marmoratus ; Cy-
prinodontidae – is documented to self-fertilize routinely. 
Most mature individuals have an internal ovotestis that 
produces sperm and eggs that typically unite inside a 
fish’s body, after which zygotes are laid into the environ-
ment. In some populations, selfing rates are so high that 
nearly all fish belong to highly inbred lineages that have 
near-zero heterozygosities and thus, in effect, are clonal. 
Also present in this species are pure males who appear to 
mediate occasional outcross events. This happens when a 
hermaphrodite sheds some unfertilized eggs onto which 
a male (who has no intromittent organ) releases sperm. 
Thus,  K. marmoratus  can be described as an androdioe-
cious species with a mixed-mating system [selfing and 
outcrossing; Mackiewicz et al., 2006a, b]. This remark-
able reproductive system, which was discovered a half-
century ago [Harrington, 1961] and has been the subject 
of many genetic and evolutionary analyses [review in 
Avise, 2008], is unique among vertebrates.

  Mixed-mating systems are common, however, in 
plants [Goodwillie et al., 2005] and invertebrate animals 
[Jarne and Auld, 2006], for which various hypotheses 
have been advanced for why selfing is tolerated given 
what otherwise would seem to be a serious potential 
problem: inbreeding depression (low genetic fitness in 
the progeny of matings between close kin). In principle, 
one compensating evolutionary advantage to selfing is 
that a selfer transmits two sets of genes to each offspring 
whereas an outcrosser transmits only one set. Another 
evolutionary idea is that a mixed-mating system converts 
the inbreeding dilemma of constitutive selfing into a 
best-of-two-worlds adaptive strategy that combines many 
of the advantages of sexual and clonal reproduction [Al-
lard, 1975]. In particular, consistent selfing might often 
be advantageous in the ecological short-term because it 
can yield progeny with identical copies of potentially co-
adapted multi-locus genotypes that nature already has 
field-tested for genetic fitness (in parental lineages) in a 
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particular habitat. However outcrossing is important as 
well, especially when habitats change over time or show 
spatial heterogeneity, as it produces genetically diverse 
progeny, some of which may be well suited to the new en-
vironment.

  Although such considerations may have played a role 
in the evolution of selfing as part of the mixed-mating 
system in  K. marmoratus , we suspect that another factor 
has been more important. By virtue of producing both 
eggs and sperm simultaneously, each self-fertilizing indi-
vidual has automatic ‘fertilization insurance’. Baker 
[1955] was the first to promote the notion that the capac-
ities for self-fertilization and for long-distance dispersal 
are positively correlated across species of plants and in-
vertebrate animals, and that a plausible explanation in-
volves the reproductive assurance that comes from being 
a selfing hermaphrodite, since even a single individual 
can be a successful colonist. The empirical association 
between selfing and colonization potential (or ‘weedi-
ness’) has become known as Baker’s rule.

  The behavior and natural history of the mangrove kil-
lifish can be interpreted as consistent with Baker’s rule in 
several regards: the species has a large geographic range, 
extending from southern Brazil to Florida and including 
many Caribbean islands; a tendency for individuals to 
occupy mangrove litter and termite cavities in rotting 
logs may predispose this species to occasional long-dis-
tance dispersal via floating forest litter (e.g., following 
storms); adults can survive out of water for up to 10 weeks; 
fertilized ova are well suited for dispersal because they 

too can survive out of water for long periods; and many 
killifish individuals tend to lead rather isolated, inde-
pendent lives. All of these attributes would favor self-
fertilization as a routine alternative to outcrossing in  K. 
marmoratus . The mixed-mating system could thus be in-
terpreted to combine the long-term and short-term ad-
vantages of outcrossing (continued genetic health and 
adaptability) with the immediate benefits of selfing (in-
cluding fertilization insurance).

  Synopsis 

 This review has merely delved into some of the evolu-
tionary considerations that apply to various fish species 
in which individuals can reproduce as both male and fe-
male. Nevertheless, even this cursory treatment should 
make it clear that hermaphroditism in vertebrates is a 
phenomenon rich in conceptual and empirical content 
for many arenas in ecology, ethology, genetics, and evo-
lutionary biology.
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